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Outline

• Introduction to synchrotron beam monitoring

−Current applications of SiC XBPMs at microXAS@SLS

• Whitebeam and cross-chromatic monitoring 

−Comparisons between hard and soft beamlines @ SLS

−Example of 6GeV Engineering materials beamline @ HEPS

• Conclusions and outlooks

• Q&E
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Generalities of Synchrotron Beam 
monitoring

• transparency (>98%)

• stability over time

• good lateral resolution (<um)

• fast response (<ms, <us)

• large active areas (mm2)

WHITEBEAM 
MONITORING

MONOCHROMATIC 
MONITORING

END-STATION 
MONITORING

Main requirements

PINKBEAM 
MONITORING

CLOSE-TO-SAMPLE 
MONITORING

SAMPLE
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Generalities of Synchrotron Beam 
monitoring

1)  Monochromatic

MONOCHROMATIC 
MONITORING

Commercially 
available XBPM

4) Only on single-feedback schema

2) Hard-Xray

3) Position

SAMPLE



Standard "thin-membrane" solid state XBPM
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Standard "thin-membrane" XBPM
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Comparison between Diamond and 
Silicon Carbide XBPM 

Page 7*up to instrumental limits

“A comparison between single crystal diamond and 

SiC X-ray beam position monitors” 
HOUGHTON, Diamond Light Source, SRI/JSR

Single crystal diamond

PCB

CIVIDEC 

SYDOR

SiC
SenSiC

PCB

>20µm

<5mmx5mm

up to 10cmx10cm….

400µm

ultra-thin (framed) membrane!
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Why choose Silicon Carbide XBPMs? 
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• Lower device costs

• Larger active areas (up to x9 time higher)

• Higher current signals / higher resolutions*

• Superior transparencies (20μm, 2μm, 1μm, 0.2μm)

• easier installations:

− zero bias operation

− test of devices without beam

• Short delivery times

• Large number of devices quickly available

*for equivalent sensor geometries



Comparison of X-ray sensors

A

semiconductor based

internal photoemission

metal based

external photoemission

gas based

photoionization

electron

visible light

fluorescence screen

X-ray beam

A



Schematic comparison of detectors

• Can't we take best advantage of miniaturization

• While mitigating the transparency/Rad-Hard responses?

- If so, solid state sensors will expand their areas of applications -

sensor type Gas chambers
Blade

monitors
Semiconductor 

sensors
fluorescence

screen

transparency high
very low 
very high

depends… low

radiation 
hardness

intrinsic high medium/high depends… low

foot print medium/large medium extremely small large

lateral
resolution

low medium very high medium

time 
response

low low/medium Very high low
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microXAS@PSI currently represents the 
most advanced “XBPM-monitored” 
beamline WW 
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• Currently installed: 

n.7 sensors (after mono, I0, nano-focus, pinkbeam and beam-stopper intensity)

total of 10 sensors planned for installation

• Planned: pixelated, before mono, whitebeam, beam-stopper position
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Monochromatic “standard” XBPM
-first implemented SiC XBPM base feedback-loop 

schema

Page 12

*sigma: <400nm

x5 Improvement using SiC XPBM based feedback system
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Pointing instability*: 0.4µm

Control/feedback important in spectroscopy measurements to                                 

compensate for energy drifts!

Pointing instability: 2.5µm
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Near sample monitoring
-Beam stopper diode (no transmittance mode)
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Absorption → SiC Diode on the beamstopper
➢ Absorption Contrast Imaging

➢ X-Ray Absorption Spectroscopy

Collaboration of microXAS team with Massimo Camarda, 

Laboratory for Micro- and Nanotechnology, PSI

➢ 3D Mechatronic Integrated Device Courtesy: Dario Sanchez
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XANES

Near sample monitoring
-Beam stopper diode (no transmittance mode)
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3D Full-field Absorption 
Contrast Tomography

Absorption 
Contrast

XRF

XRF, SIXES

XRF, SIXES

Courtesy: Markus Breckheimer, Institute for Nuclear 

Chemistry, Johannes Gutenberg-University Mainz

pyrite calcite

XRD

*
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Near sample monitoring
-Beam stopper diode (no transmittance mode)
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*

• 0.6mm (0.8mm)   intensity monitor

• 1.8mm (2mm) intensity monitor

• 1.8mm (2.2mm)   position monitor

• 2.8mm (3.3mm)   position monitor
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Near sample monitoring
-Fast/compact intensity sensor*
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CURRENTLY WORKING ON:

1. COMBINATION OF INTENSITY+POSITION MONITOR (TELESCOPE CONFIG.)

2. COMBINATION OF POSITION + PIN-HOLE
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Near sample monitoring
-Fast/compact intensity sensor*
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Value proposition

WHITEBEAM 
MONITORING

MONOCHROMATIC 
MONITORING

END-STATION 
MONITORING

PINKBEAM 
MONITORING

CLOSE-TO-SAMPLE 
MONITORING

MONOCHROMATIC MONITORING

WHITE/PINK MONITORING

POSITION

CLOSE-TO-SAMPLE MONITORING

INTENSITY

BEAM-STOPPER

PROFILE

HARD-XRAY

SOFT-XRAY

SAMPLE

DEVELOPMENT OF  CUSTOMIZED 
ELECTRONICS FOR READOUT AND 

CONTROL (FEEDBACK)
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ID whitebeam, spectra 
(microXAS, spectra)
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1. determine flux(E,x,y,z) generated by ID (Spectra)

plots using very wide acceptance window (24x24mm2)
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1. determine flux(E,x,y,z) generated by ID (Spectra)

ID whitebeam, spectra 
(microXAS, spectra)
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2. determine current on XBPM

(X,Y,E) CURRENT MAPS

Flux after optical elements

Generated current 

depends on Eph

SiC

PCB

400µm

1500µmx1500µm
2µm

ID whitebeam, spectra 
(microXAS, spectra)



massimo.camarda@SenSiC.ch

Beam to Current conversion
“Standard 2um SiC XBPM, microXAS”
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Knife-edge scan at center
Standard 2um SiC XBPM@microXAS
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(Theoretical) lateral resolution of  [2.7um,3.7um]

Max current on device (diaphram*) 3[A]
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Temperature profile
Standard 2um SiC XBPM@microXAS
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Expected 3500°C….
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LIMITS AT THE MATERIAL LEVEL
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8mm

-8mm

-6mm

-4mm

-2mm

0mm

2mm

4mm

6mm

Y profile

DETECTION REGION

DETECTION REGION

FULLY UNDISTURBED 
REGION

HARMONICS

Generalities of whitebeam monitoring

+2mm

-2mm

+8mm

-8mm
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WE ARE NOT MEASURING THE «TAILS» OF THE BEAM

WE ARE REALLY MEASURING THE «OFF HARMONIC» COMPONENTS! 

CROSS-CHROMATIC MONITORING

Generalities of whitebeam monitoring
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Whitebeam monitoring
“Blade-type” 2um SiC XBPM, microXAS
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SIMULATED TEMPERATURE: 250°C (x10 reduction!)
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Max current on device (diaphram) 1.7[A] (x2 reduction)

Knife-edge scan at center
“Blade-type” 2um SiC XBPM, microXAS
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Whitebeam monitoring
“Blade-type” 2um SiC XBPM@microXAS
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• Max current on device (diaphram) 1.7[A] (x2 reduction)

• Max temperature 250°C (x10 reduction)

• Lateral resolution of [1.8um,2.7um] (≈x2 improvement)
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Whitebeam monitoring
“Blade-type” 2um SiC XBPM@microXAS

LATERAL RESOLUTION Τ∇𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑥, 𝑦) ∇𝑥

𝑆𝑁𝑅(𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠) ≈ 1𝐸4

𝑀𝑎𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Τ∇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑥, 𝑦 ∇𝑥

𝑀𝑎𝑥 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Τ∇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑥, 𝑦 ∇𝑥
×

1

𝑆𝑁𝑅(𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠)
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Whitebeam monitoring
“Blade-type” 2um SiC XBPM@microXAS
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• Max current on device (diaphram) 1.7[A] (x2 reduction)

• Max temperature 250°C (x10 reduction)

• Lateral resolution of [1.8um,2.7um] (≈x2 improvement)
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Response of SiCBlades: 
FILTERED CONFIGURATION

Page 33

• we are using an “integrated/monolitic/local filter”

• quite strong filter (equivalent to 3.6mm diamond window)

• a filter present only on the tails, not at beam center

• applicable for all Xray beamlines (soft-hard) 

substrate active substrateactive
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Max current on device (diaphram) 2 [mA] (>x1000 reduction)

Whitebeam monitoring
“OPTIMIZED Blade-type” 2um SiC 
XBPM, microXAS

Max temperature same of before (250°C)…

2um mem= [2.7um,3.7um] 

blade=[1.8um,2.7um]

Lateral resolution of [0.7um,0.22um] (>x3-10 improvement*)

WHY???
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Blade-type sensors: OPTIMIZED
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filtering everything below 7.5keV → cross-chromatic monitoring

filtering everything below 7.5keV → can filter bendig magnet radiation

fully

filtered

370um SiC “Filter”
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Blade-type sensors: OPTIMIZED
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main signal contribution 
coming from <8keV photons

main signal contribution 
coming from <8keV photons

STANDARD SiC XBPM OPTIMIZED SiC XBPM
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STD vs. FLIPPED 

Page 37
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Knife-edge scan at center 
comparison of XBPM types@ SIM beamline
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• Lateral resolution of [116um(!)– 1.3um]

• Max current on device 4.8[A]

• Max temperature 3000°C

“Standard” 2um SiC 

XBPM

• Lateral resolution of [138um– 0.86um]

• Max current on device 1.4[A]

• Max temperature 130°C!

“BLADE” SiC XBPM

• Lateral resolution of [4.6um(!)– 0.18um]

• Max current on device 1[mA]

• Max temperature 130°C

“OPTIMIZED BLADE” 

SiC XBPM

[x25(!)–x7]
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SPECTRA parameters/calculations
B1 Engineering materials beamline@HEPS
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Integrated (over space, assuming 
0.1%BW) FLUX

Page 40

flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

1th harmonic

11th harmonic (82560eV)
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Integrated (over energy, assuming 
0.1%BW) FLUX
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

NOTICE:

simmetric profile
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Integrated (over space, assuming 
0.1%BW) POWER
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 
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Integrated (over energy, assuming 
0.1%BW) POWER
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

NOTICE:

elongation along X
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Integrated (over energy, assuming 
0.1%BW) ABSORBED POWER (2um 
SiC XBPM)
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

NOTICE:

elongation along Y!!

Lateral resolution 

[1.12um,36.3um]

Max current on device 

1.4[A]
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Integrated (over space, assuming 0.1%BW) 
ABSORBED POWER (2um SiC XBPM)
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

MAIN CONTRIBUTIONS COMING FROM:

7keV first harmonicz
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Integrated (over space, assuming 0.1%BW) 
POWER ABSORBED BY DEVICE
(STD, 2um)
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

79.2%

3.3%

13.6%
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Integrated (over space, assuming 0.1%BW) 
POWER ABSORBED BY DEVICE 
(FILTERED BLADE, 2um)

Page 47

flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

MAIN CONTRIBUTIONS COMING FROM:

13keV (not harmonic)
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Integrated (over space, assuming 0.1%BW) 
POWER ABSORBED BY DEVICE
(FILTERED BLADE, 2um)
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

0.4%

42%

24%
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DEVICE CURRENT MAPs
comparison
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Very different profiles 
related to different shape of 1th and 2th harmonics

STD “blade” FILTERED “blade”
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Integrated (over energy, assuming 
0.1%BW) ABSORBED POWER 
(2um SiC OPT XBPM)
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flux maps energy calculations:  6000 steps between 500-50000eV (7eV steps)

3000 steps between 50keV-110keV (20eV steps) 

Lateral resolution 

[0.46um,2.7um]

Max current on device 

90[mA]

x10
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conclusions and outlook
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What is now (installed):

1. Standard SiC XBPM with better characteristics than diamond

2. SiC sensors alternative to gas chambers (I0)

3. SiC sensors for absorption measurements (beam-stopper)

4. “Ultra-compact” SiC sensors alternative to xray eyes (nano-focusing)

5. Feedback system for (slow) shift during spectral measurements

What we are currently working on:

1. Fast and complete readout and feedback control loops 

2. Monitors for small angles scattering measurements (XBPM beam-stopper)

3. Monitors for profile monitors (X-ray imaging) 

4. Resistive Xray position monitors (single pixes sensors)

5. Whitebeam and crosschromatic monitoring

SiCblades™ detectors can: widthstand (easily) extreme high powers

be used for both soft- and hard-Xray beamlines

be optimized to yield very high lateral resolutions

be optimized to avoid bending magnet background radiation

have multiple “pixels” to reconstruct asymmetric distributions

Goal of SenSiC is to develop X-ray diagnostic at all levels, 

using a novel material and customized technologies
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THANKS FOR YOUR ATTENTION!
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