

Feasibility study of monitoring polychromatic X-ray beams at synchrotron radiation sources

Massimo Camarda, CTO SenSiC GbmH

- Polychromatic monitoring
- Modelling to determine sensors characteristics
- Opportunies and difficulties
- Conclusions and outlook

Generalities of Synchrotron Beam monitoring

Feasabilty study of X-ray solid-state SRI2O 21 beam-monitoring for whitebeams

SENSI

ID whitebeam, spectra

1. <u>determine flux(E,x,y,z) generated by ID (Spectra)</u>

plots using very wide acceptance window (24x24nim²)

Device Length (m)

K Value

ε1st(eV)

SENSI

Regular Magnet Length (m) 1.748

1.5

1367.22

Number of Regular Periods 92

ID whitebeam, spectra (microXAS)

determine flux(E,x,y,z) generated by ID (Spectra) 1.

File Select Calculation Run Accelerator Specification	Utility Configuration Help						
Storage Ring							
Bunch Profile: Gaussian		Injection Condition: Default					
Electron Energy (GeV)	2.411	Energy Spread 0.8784e-3					
Average Current (mA)	400	β _x (m)	8.32		αx	-2.1	
Circumference	300	β _y (m)	0.52		αγ	0.007	
Bunches	400	η _x (m)	0		ηx'	0	
σz (mm)	6	η _y (m)	0		ηy	0	
Peak Current (A)	19.9471	1/γ (mrad)	0.	211945	•		_
Natural Emittance (m.rad)	56.3e-10	σ _x (mm)	0.2162 2.281e-03 0.2852		σ _{X'} (mrad) σ _{V'} (mrad)	0.06045	
Coupling Constant	0.00178	σ γ (mm)				4.3866-03	
εx (m.rad) 5.62e-09	ε _γ (m.rad) 1.000e-11	γσχ.			γσγ	0.02005	
Light Source Description							
Linear Undulator							
☐ Link Gap & Field ✓ End Correction Magnets	Segmented Undulator	σr (mm) Σx (mm)	4.481e	-03	σr' (mrad) Σx' (mrad)	0.01611 0.06256	
Gap Value	24	$\Sigma_{\rm V}$ (mm)	Σ_{V} (mm) 5.028e-03 $\chi_{1st}(nm)$ 0.90683		$\sum_{y'}$ (mrad)	0.01669	
B(T)	0.845506	$\lambda_{1st}(nm)$			5		
Periodic Length (cm)	1.9	ε1st(peak:eV) 136 ε3rd(peak:eV) 409 Ε1www 2.00		1363.12			
Device Length (m)	1.8			2 02060	060+15		

Flux_{1st}

Brilliance1st

Peak Brilliance

Bose Degeneracy 0.698894 Total Power (kW) 1.83832

massimo.camarda@SenSiC.ch

2.0206e+15

4.5073e+19

2.24769e+21

ID whitebeam, spectra

2. determine current on XBPM

ID whitebeam, spectra

2. determine current on XBPM

Beam to Current conversion "Standard 2um SiC XBPM"

Max current signal 21.0634[A]!

Max current temperature 4000°C!

<u>massimo.camarda@SenSiC.ch</u>

Pink beam monitoring:

Y profile

SRI20 21

30/03/2022

SENSI

Pink beam monitoring:

cross-chromatic monitoring

SENSI

Pink beam monitoring:

cross-chromatic monitoring

MUCH HIGHER YIELDS (X1000)

NOT PRONE TO SURFACE CONTAMINATION EFFECTS

BUT STABILITY OVER TIME?

Chamber design

0.5-2mm Silicon Carbide sensor

Active sensor area facing beam

- we are using an "integrated/monolitic/local filter"
- quite strong filter (*equivalent to 3.6mm diamond window*)
- a filter present only on the tails, not at beam center

SENSI

applicable for all Xray beamlines (soft-hard)

Blade-type sensors: *FLIPPED*

STANDARD SiC XBPM

FLIPPED SIC XBPM

New test chamber at PSI

Acknowledgments partially funded by the Aargau Foschungsfonds 🕢 🎇

CONCLUSIONS

- A theoretical frameworkmodel to predict whitebeam sensors:
 - for different ID and locations (Spectra)
 - current signals, heat load and temperature (Matlab and COMSOL)
- "Standard" SiC XBPM cannot work at frontend locations

(non-full intercepting)

• "SiCBlades" ideal alternative solution for such locations, many benefits:

Central region of the beam completely un-disturbed

U The very large sensor size needed (**up to 2cm**) achievable by SiC XBPM

Similar to metal-blade front-end monitoring, but with much superior signals/stability

- "flipped Blade type" SiC sensor can futher improve characteristics:
 - n further reduction of current signal
 - \odot Increase of resolution \rightarrow lower effective FWHM
 - $_{\odot}$ Elimination of bending magnet noise ightarrow selection of hard-Xray components

THANKS A LOT FOR YOUR ATTENTION Thanks to PSI

HAPPY TO PERFORM THESE ANALYSIS FOR YOUR WHITEBEAM LOCATIONS

Q&A

Acknowledgments partially funded by the Aargau Foschungsfonds 🕢

